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Abstract. Grover's algorithm is used to search for quanturra.delowever, this
algorithm procedure is described by means of cdascapd operators from quan-
tum theory; concepts hardly known by computer s In this work we pro-
pose an alternative classical computing model aivér's algorithm, using Toffoli
gates connected with elementary gates. Our modelbkan programmed on a
high-level programming language and tested usithgrary elements on a data
set. Our results are concordant with those predemtehe reference section.
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1 Introduction

A computer is a physical device that aids us t@@ss information while running
some algorithms. An algorithm is well defined prdeee, with finite description,
that executes some information processing tasksk of this kind can be done by
means of physical processes.

At the design level of complex algorithms, it iefid and essential to work with
some idealized computational model. However, waitalyzing the true limitations
of a computer device, especially for practical oeas it is important not to forget
the link between computing and physics Idealized @ can not fully represent all
the details of these computational devices.

Classical computing has several limitations. Theme problems that cannot be
deal with actual computing, such as the imposgyhit run on polynomial time the
travelling agent problem algorithm or integer faization.

However, it has been shown that those kinds of lpro can be handled by
guantum computing. Quantum computing uses the phenomena describgddry
tum theory in order to process information and exedasks faster than classical
computing. Devices that process quantum informagi@namedjuantum compu-
ters.
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2 Grover’s Algorithm

Suppose there is a non sorted data base of sibadisting (without loss of gene-
rality) of numbers from 0 to N — 1. Using traditedralgorithms, we must look up
for every element on the data base in order to fir@ldesired item. The average
number of steps needed is N/2, and N on the waist scenario; therefore, search-

ing for an element has order @(N) time complexity. However, using quantum

mechanics procedures, Grover’s algorithm only n&mﬁ)(\/ﬁ) steps. [1]

Initially, an n qubit system, withN = 2" elements, is set in an equal superposi-
tion of all basis states, expressed as

W) =—=>i) "

IN

It is posible to search for a specific elementdesthis system. This particular
element is defined as timearked state while the remaining elements of the set are
defined as theollective state[1]. In order to perform the searching of the marke
state, two special operators C and D are usedatbfis inversion and diffusion op-
erator, respectively. Operator C has the effeatwtert or change the sign of the am-
plitude in the marked state, and ignores the reiteoelements belonging to the col-
lective state. When operator D is applied to thgesposition of states, it increases
the amplitude of the marked state, decresing thgliarde of the collective state. If

we define the compound operatorlds= DC , then each operation &f is called
an iteration. It has been shown that atlds repeate(D(\/ N ) times, the probabil-

ity of getting the marked state when a mesauresentde approeaches 1 [1].

2.1 Representation of inversion and diffusion opetars.

Before reading the following sections, we encoungpe to read [4], where the
most important operations on quantum computingeap@ained in great detail. Al-
so, for a wide explanation of Grover’s Algorithnsights, we recommend reading

[1].
N-1
Given the superposition of stat{s%l—’o> = (]/\/W)ZM , we will denote the
i=0

marked state alle >
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Inversion operator C is defined &5 = | —2| M ><M | wherel is the identity
matrix[5]. Similary, diffusion operator D is defideas D = 2| ‘-P><‘-P|— l.
To be able to represent these operators by meahsfiolii gates and elementary

operations, it is necessary to know the effect pced by them on the superposition
of states. Let’s spli1W0> into two parts: the marked state and the collecsiate,

that is, a linear combination 4)H’O> defined as:

|Wo)=a|¥)+B|M) @

where @ andf are their respective amplitudes of the collectitates and the

marked state.
Next, we will apply the inversion operator to thigear combination of states:

C(alw)+p|M))=(1 =2[mM)(M[)(a|¥)+ BIM))
2a

clalw)+ M) =al¥)-| 5+ ) m) ®

At this moment, C operator has changed the sigheofmarked state. Next step is
to apply the diffusion operator on equation (2)aiTis:

0| a)~{ 208 )| = (@) | -1) ) 2+ )|

B

0| ) {20+ g )| < a-20 -2 o ) @

We have applied once the compound operbto® DC, and so, an iteration of
Grover’'s algorithm have been made. According tq [fif number of iterations

needed to approach the amplitude of the marked it isLm/WMJ .
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2.2 Alternative representation of Grover's algorithm using different
approaches.

Grover algorithm can be also represented by csausing interconnected quantum
gates and the Toffoli gate [8]. A circuit for 2 duystem is shown in Figure 1.

0) ] A G H-
0)~[F— 0 [—[H—{ol—E- - E— oA

1) —{H]

Fig. 1. A quantum circuit that implements Grover's algamitfior N = 4 elements. Pauli
matrix o, behaves as a NOT gate. Block with letter O denatpsery to the oracle.

Another representation of Grover’s algorithm canrbplemented using optical ap-
proaches, as described in [16] for a system oflf#talements. An implementation
using two trapped atomic ion qubits for a systen® afubit elements is also pro-
posed [17]. Other representations such as nuclagnetic resonance are described
in [5].

As it will be shown on the next sections, we willildi a model that will also
represent Grover's algorithm, but using only cleaki(non-quantum) elementary
gates (with its limitations, see Conclusions sentio

3 Toffoli gates

Toffoli gates were invented by Tommaso Toffoli [1L8F main characteristic is that
it is a universal reversible logic gate. It is avensal gate because any logic gate can
be constructed by means of several Toffoli gatésr@éonnected. It is a reversible
logic gate because, given a certain output, weaddain its corresponding input.
Toffoli gates can be modeled using the billiardl abdel [2]. This gate is also
known as a controlled-controlled-NOT gate, becatfigpos the third bit on a 3-bit
gate if and only if the first two bits are 1. Fga) shows Toffoli gate truth table
when applied to three bits, and Fig. 2b) showsiitwiit representation.

Toffoli gates are crucial for our proposed modéigcs it will aid us in the con-
struction of the inversion operator C because iit detect if the marked state was
found or not (see Section 4.2). The output of theiision operator C will be zero if
the element is not the marked state, and it willLbéthe marked state was found.
These outputs will be used then for further caltoites.
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Input Output
alblc|a |P |
o(of(oj0o |0 |0
Ojfof(1{0 |0 |1
Of1(0j0 |1 |0
Of1({1{0 |1 |1
1{0|0]1 (0 |0
1{oj1|1 (0|1
1|1 (0|1 (1|1
1|1 (1|1 |1 |0

a)

b)

Fig. 2.a) Toffoli gate truth table when applied to thréts.kb) Circuit implementation.

4  Realization of Grover’s Algorithm using Toffoli gates

Now that we have obtained the neccesary equatirons the preceeding section,
we now are able to model Grover’s algorithm. If ek closely to Eq. 3 and 4, we
can see that the operations involved are elemeatddifions, substractions, multip-

lications and divisions, such as-4a/N - 2,8/«/“ . Thus, we need basic gates that

perform these operations, such that this model béllconstructed interconnecting
classical logic gates. The elements involved irs¢hgasic operations are needed for
the model, so we must supply them at the beginafribe execution. We call these
elements as theontrol data of the model. Also, thenput data will consist of the
initial element list, which contains the superpiositof states. Fig. 3 shows a general
diagram for the proposed model.

Input
Data

Control
Data

Grover
Operator

uU=CD

Grover
Operator

uU=CD

Grover
Operator

u=CD

Ampltude of
input data

Fig. 3. General shematic of Grover’s algorithm proced@mver operator is applied the op-
timum number of iterations in order to increase d@ngplitude of the marked state, and thus
increasing its probability.
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Elements from Figure 3 are described below.

Input data: It consists of the element list, which stores itterked state and the
colective state.

Control data: These are fixed data that must be supplied to Itierithm before
its execution. Control data consists @f, which represents the amplitude of the

marked state;3, which stores the amplitude of all the collectset; and finally

1/N and ZI/\/ N , where N represents the total number of stateb@database.

Grover operator: This operator was defined in section 2hss DC .

Input data amplitudes. This is the set of the final amplitudes of the kel state
and the collective state. After applying Grover rgper a total oftﬂ\/ﬁ / 4J itera-

tions to the superposition of states, we expedttttemamplitude of the marked state
is almost 1.

4.1 Elementary gates

In order to implement Grover's algorithm using rgqurantum operations through
classical gates, we need to define them first. hQjates constitute the set of basic
operators of the model.

M GATE
This gate requires two input elements. It retutms product of both elements.
(See Fig. 4)
X
II —xv
y —

Fig. 4.n-gate: it returns the product of x times
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> GATE

This gate also requires two input elements. Itrretithe sum of both elements.
(See Fig. 5)

X

O

Fig. 5: Y -gate: it returns the sum of x apd

Vo

0 GATE

For this gate, two input data are needed. If duwsd element is set to 1, the first
element will suffer a change of its algebraic sigfinerwise, it will remain unaltered.
(See Fig. 6)

¥
g pP—1*Ix
Vo

Fig. 6: O -gate: ify is set to 1, this gate will change x’s sign. Oteise, x will keep un-
changed.

4.2 Modeling of Grover operator using Toffoli and éementary gates.

As stated before, Grover operator consists of p@ieation of C operator, fol-

lowed by D operator, that is, = DC .

Inversion operato€ is constructed according to the element we areckigy for,
that is, the marked state. We constructed inversymerator using the binary repre-
sentation of the element as follows: if the mark&ate contains zeroes, two NOT
gates are put sequentially, otherwise, no gateé&led. These gates are connected
by means of offoli gate; this gate acts as follows: if every bit is sefitdt means
that the marked state was found, and it will rerhas an output, otherwise, it will
return a zero, (that is, the marked state was owd).Suppose we want to search
for the element 10 on the superposition of statgésoge binary representation is
1010 for a 4-bit system). Construction for the irsi@n operator C using elementary
and Toffoli gates is shown in Fig 7.

381
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| |
|1 1|
| |
| |
| |
111 1|
| |
| |
1| 0 4l>9*-—l>0*nl
| |
| |
10 D 1]
|

Fig. 7: Construction of inversion operator C for elemen{(dAich binary representation is
1010). Fifth bit is set to 0, so if every remainisigat the end was set to 1, this bit will be also
switched to 1, meaning that the marked elementfowasd.

Diffusion operator D is needed to increase the aog# of the marked state. Ac-
cording to Equation 3, this operator can be coottdiusing elementary gates as
shown in Fig 8.

Fig. 8: Diffusion operator. Interconnection of classicategaallows to increase the ampli-
tude of the marked state. This operator along withinversion operator succesfully simu-
lates Grover operator U = CB, andp, are variables that will be used on further caldotes.
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For illustrative purposes, let's take a closer l@khe first part of Fig. 8. Eq. 4
shows that the partial chain of operatiansda/N is performed. This is done by
the section described in Fig. 9, taken from thgwdim in Fig. 8

o 1 —Z_

1N II o II

4—

1—

Fig. 9: Carefully following each element on the diagram, see that the operation
a —-4a/N is successfully made.

4.3 Searching for a marked state using the model.
In order to show how the model works, let's look the element labeled “4”

stored in a list of 3 g-bit elements. First, we stomct the Inversion operator C for
element 4 using a Toffoli gate and NOT gates (3gel®)

:1 1:
I I
o e Do)
I I
Iﬂ \\_ r_}l
| )
:O {:} 1
I I

Fig. 10: Construction of inversion operator C for elemeifivitich binary representation is
100). Fourth bit is set to 0, so if every remainbiigat the end was set to 1, this bit will be al-
so switched to 1, meaning that the marked elemastfaund.

Toffoli gates are useful on the task of finding tharked state, since it detects
wherever the marked state is there or not. Sineetttire list consists of 8 elements
(from O to 7), we must apply the inversion operdtorevery single element belong-
ing to the list. Fig. 11 shows the results of apmythe inversion operator on ele-
ment 3 and 4.
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34 C 0

4—{C 1

Fig. 11: When inversion operator is applied to element i8feturns a 0 since it is not the
marked state. On the other hand, C operator retufinghen applied to the element 4, that is,
the marked state was found. This outputs are usédrther calculations.

Next step is to increase the amplitude of the nwgkate using the diffusion op-
erator. Fig. 12 shows how while combining the otgdtom both in andversion dif-
fusion operators we increase the amplitude of theked state, while the collective
state remains without change. Notice that onlydlement 3 and 4 are shown for
simplicity, but this has to be done for every eletren the list of elements.

3 C ] II
Z Collective state

II I amplitude

o
o,
N
Marked state

ﬁ =0 D ‘5' J— Z I amplitude

s— c HI!

1N

Fig. 12: With the ouput of inversion operator, it is now gibde to increment the ampli-
tude of the marked state. To accomplish this, wayagiffusion operator D and combine it
with the output of inversion operator C, just likgs. 3 and 4 describe. Notice how the out-
puts from the inversion operator are multipliedtbg auxiliary variablgs; and then added to
the final result. Since the ouput from the invemsaperator is always zero for elements of the
collective state, the product is also zero andingtts added, except from the marked state.
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5 Simulation of the model using a high-level progmmming
language.

At this stage, we can program an algorithm thausites the processes of Grover’'s
algorithm for quantum search. This algorithm wid programmed on a high-level
programming language to run some tests, in ordealidate our model.

5.1 General Algorithm

We present the general steps needed to simulatectdgrGrover’s Algorithm. This
algorithm is based on Equations 3 and 4. Its adgntonsists of the few steps
needed to simulate Grover’s algorithm.

Classic Gover Al gorithm

I nput
N: the total nunber of elenents on the system

B=(B.B,,...A.): the anplitude quoeficient vector
of the collective state.
a,: the anplitude of the marked state.

Qut put
B=(B.B...6y.): the changed anplitude quoefi-
cient vector of collective state.

a'y,: the new anplitude of the nmarked state.

Vari abl es
B:the value of the anplitude of the collective

state. W& can store it on a single variable since
all the collective state will have the sane anpli -
tude through the entire algorithm

coef: an auxiliary variable used to store interme-
di ate val ues.

Begi n
//1nitialize every elenment of the vector S OB and
/lthe anplitude of the marked state to a, an
/lequally superposition of states
B -IYIN
aM‘_]‘/\/ﬁ

385
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Repeat fromi =1 to Ln\/ﬁ/ﬂ

/1 Apply the operations from Equation 3 to the
/lamplitude of the marked state and the
//collective state.

aIM « Qy _MM/N_le/\/N
B - 2a/NN+p

//Store the new nornalized marked state to the
auxiliary vari abl e.

coef O"M/\/N

/1 Assi gn each el enent ,BiDB its new anplitude.
B~ coef

/1 Assign the new anplitude of the marked state.
a'y — coef +[

End Repeat

In order to validate our proposed model, we impletee it using the program-
ming language C++. Data input consists of the nunalb€ubitsn and the number

of desired iterations. It let you choose the optimmumber of iteration%ﬂ\/ﬁ/ﬂ,
or any other number of iterations.

5.2. Tests using the optimum number of iterations

Table 1 shows the results for databases built ftoim 10 qubits, using the opti-
mum number of iterations. Th@obability of the marked stateis the probability
of obtaining the marked state when a measure ofuberposition of states is made.
The probability of the collective state(or probability of failure) is the probability
of obtaining one of the elements of the collecttate. Since the probability of the
marked state is always same, despite the elemanttssd for, it is unnecessary to
list the marked state. This means that if we ao&itgy for the element numbered as
3 on a list of 16 elements, the probability of ahitzg it after applying Grover’s al-
gorithm is 96.1319%, and that probability will redtange if we are looking for the
element numbered as 5 on that same list.
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Table 1. Probabilities of obtaining the marked state dmldollective state embedded into an
n-qubit system, using the optimum number of itersgio

No. of qubits Number of Number of Probability Probability
n elements N iterations of the of the collec-
L N /4 J marked state tive sate
1 2 1 50% 50%
2 4 1 100% 0%
3 8 2 94.5313% 5.4691%
4 16 3 96.1319% 3.8685%
5 32 4 99.9182% 0.0806%
6 64 6 99.6586% 0.3402%
7 128 8 99.5620% 0.4318%
8 256 12 99.9947% 0.0052%
9 512 17 99.9448% 0.0511%
10 1024 25 99.9461% 0.1023%

5.3 Tests using an arbitrary number of iterations

We made tests using an arbitrary number of itemafimstead of the optimum num-
ber. Table 2 shows the results for states from10tqubit.

Table 2. Probabilities of obtaining the marked state dreldollective state embedded into an
n-qubit system, using an arbitrary number of iterasi

No. of qubits Number of Number of Probability Probability

n elements N iterations of the of the collec-
marked state tive sate

1 2 3 50% 50%
2 4 3 25% 75%
3 8 6 99.9786% 0.0217%
4 16 7 36.4913% 63.5085%
5 32 7 20.9918% 79.0097%
6 64 12 0.0071% 99.9936%
7 128 10 91.9442% 8.0518%
8 256 18 54.1236% 45.7980%
9 512 20 94.2684% 5.7232%
10 1024 27 97.8187% 2.1483%
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6. Analysis of results.

Table 1 shows that if we use the optimum numbeteodtions, probability of ob-
taining the marked state is almost 100% (excepthfer2-qubit case, which is an ex-
pected outcome [14]). Particulalry, Table 1 sholat for a 3-qubit system, a prob-
ability of 94.5313%, which is also a result obtaire [1]. On Table 2 it is shown
that unexpected results are obtained if a differemhber of iterations than the op-
timal is used. There is no way to know if theraisimprovement of getting a better
probability for the marked state. For example, waia can see on Table 1 that for a
3-qubit system, we get a probability of 94.5313%gshe optimum number of ite-
rations (in this case, 2); however, Table 2 showat tve get a better probability
(about 99.9786%) if we use 6 iterations. This deesnecessarily mean that if we
use a bigger number of iterations, the probabditybtaining the marked state will
be better. For example, calculating the probabitifya 6-qubit system yields a
99.6586% for the marked state, using the optimumbuer of iterations (6). But if
we use twice that number of iterations, Table 2anshthat we get a quite bad result
(0.0071%), meaning that the probability of failtieat is, the probability of obtain-
ing an element of the collective state when malanmeasure on the system) is
about 99.9936%. Similar results can be seen whearaveneasuring probabilities on
a database with 16 and 32 elements, or 4 and Gsgeystems, respectively.

7. Conclusions

As powerful as classical computing is, it has saMimitations. Research on un-
conventional computing, such as biological inspicethputing and quantum com-
putting is made in order to deal with these limiitas. Despite that a lot of research
work has been made on quantum computing, thetélissmuch work to do. There
are a lot of obstacles that must be solved befa@@plete physical implementation
of a quantum computer can be made. To be ableatyzmand foresight the inner
concepts and advantages of quantum computingnieégssary to have a good un-
derstanding about theoretical quantum physics. &aciwledge is often lacked by
classical computer scientists. For the aforemerticeasons, we need an alternative
model capable of explaining the quantum processesh{s case, quantum data
search) on terms that can be understood by classiogputing developers and re-
searches. In this work, we have presented an atteentheoretical implementation
of Grover’'s quantum search algorithm. With this mlpdve are able to analyze the
behavior of Grover’s algorithm on each iterationthaut knowing quantum physics
or owning an actual quantum computer. With thdyaisa of the main quantum op-
erators of the algorithm, an equivalent model usinty elementary operators by
means of interconnecting Toffoli gates and elemgngates was built. This model
was implemented on a high level programming languagjing equations 2 and 3.
Many simulations were made using different databagi¢h several elements. Re-
sults obtained coincide with those obtained orefid [13].

It is important to mention that our proposed mosiebws the behavior of the
Grover’s algorithm for quantum data. However, simeeare implementing a quan-
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tum algorithm on a classical computer, advantagegiieed from quantum theory
are lost, such as superposition of states, th#thésprocess that affects the elements
on the database is made one by one, and not aathe time like Grover’s algo-
rithm quantum implementation. Our model only shdwesv the probability of ob-
taining the marked states increases with the dlgaribut it behaves just as a clas-
sical algorithm.
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