
Classical Realization of Grover’s Quantum Search 
Algorithm using Toffoli gates 

 
 

Manuel-Iván Casillas-del-Llano1 and Álvaro-Lorenzo Salas-Brito2 

 
1Universidad Autónoma Metropolitana. Unidad Azcapotzalco. D.F., México 

al210180113@alumnos.azc.uam.mx 
2Universidad Autónoma Metropolitana. Unidad Azcapotzalco. D.F., México 

asb@correo.azc.uam.mx 

Abstract. Grover’s algorithm is used to search for quantum data. However, this 
algorithm procedure is described by means of concepts and operators from quan-
tum theory; concepts hardly known by computer scientists. In this work we pro-
pose an alternative classical computing model of Grover’s algorithm, using Toffoli 
gates connected with elementary gates. Our model has been programmed on a 
high-level programming language and tested using arbitrary elements on a data 
set. Our results are concordant with those presented on the reference section. 
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1 Introduction 

A computer is a physical device that aids us to process information while running 
some algorithms. An algorithm is well defined procedure, with finite description, 
that executes some information processing task. A task of this kind can be done by 
means of physical processes.   

At the design level of complex algorithms, it is useful and essential to work with 
some idealized computational model. However, while analyzing the true limitations 
of a computer device, especially for practical reasons, it is important not to forget 
the link between computing and physics Idealized models can not fully represent all 
the details of these computational devices. 

Classical computing has several limitations. There are problems that cannot be 
deal with actual computing, such as the impossibility to run on polynomial time the 
travelling agent problem algorithm or integer factorization.  

However, it has been shown that those kinds of problems can be handled by 
quantum computing. Quantum computing uses the phenomena described by quan-
tum theory in order to process information and execute tasks faster than classical 
computing. Devices that process quantum information are named quantum compu-
ters.  
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2 Grover’s Algorithm 

Suppose there is a non sorted data base of size N consisting (without loss of gene-
rality) of numbers from 0 to N – 1. Using traditional algorithms, we must look up 
for every element on the data base in order to find the desired item. The average 
number of steps needed is N/2, and N on the worst case scenario; therefore, search-
ing for an element has order of ( )O N  time complexity. However, using quantum 

mechanics procedures, Grover’s algorithm only requires ( )O N  steps. [1] 

 

Initially, an n qubit system, with 2nN =  elements, is set in an equal superposi-
tion of all basis states, expressed as 
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It is posible to search for a specific element inside this system. This particular 

element is defined as the marked state, while the remaining elements of the set are 
defined as the collective state [1]. In order to perform the searching of the marked 
state, two special operators C and D are used, defined as inversion and diffusion op-
erator, respectively. Operator C has the effect to invert or change the sign of the am-
plitude in the marked state, and ignores the rest of the elements belonging to the col-
lective state. When operator D is applied to the superposition of states, it increases 
the amplitude of the marked state, decresing the amplitude of the collective state. If 
we define the compound operator as U DC≡ , then each operation of U is called 

an iteration. It has been shown that after U is repeated ( )O N times, the probabil-

ity of getting the marked state when a mesaurement is made approeaches 1 [1].  
 

 

2.1 Representation of inversion and diffusion operators. 

Before reading the following sections, we encourage you to read [4], where the 
most important operations on quantum computing are explained in great detail. Al-
so, for a wide explanation of Grover’s Algorithm insights, we recommend reading 
[1]. 

Given the superposition of states ( )
1

0
0

1
N

i

N i
−

=

Ψ = ∑ , we will denote the 

marked state as M . 

376   Manuel-Iván Casillas-del-Llano and Álvaro-Lorenzo Salas-Brito



 

Inversion operator C is defined as 2C I M M≡ − , where I is the identity 

matrix[5]. Similary, diffusion operator D is defined as 2D I≡ Ψ Ψ − . 

 
To be able to represent these operators by means of Toffoli gates and elementary 

operations, it is necessary to know the effect produced by them on the superposition 

of states. Let’s split 0Ψ into two parts: the marked state and the collective state, 

that is, a linear combination of 0Ψ  defined as: 

 

 0 Mα βΨ = Ψ +  (2) 
 
 

where α andβ are their respective amplitudes of the collective state and the 

marked state. 
Next, we will apply the inversion operator to this linear combination of states: 

 

( ) ( )( )= 2C M I M M Mα β α βΨ + − Ψ +
 

 

 ( ) 2
C M M

N

αα β α β Ψ + = Ψ − + 
 

 (3) 

 
 
At this moment, C operator has changed the sign of the marked state. Next step is 

to apply the diffusion operator on equation (2). That is: 
 

 

( )2 2
2D M I M

N N

α αα β α β
      Ψ − + = Ψ Ψ − Ψ − +      

      
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 (4) 

 
 

 
We have applied once the compound operator U DC≡ , and so, an iteration of 

Grover’s algorithm have been made. According to [7], the number of iterations 

needed to approach the amplitude of the marked state to 1 is / 4Nπ 
  . 
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2.2 Alternative representation of Grover’s algorithm using different 
approaches.  

Grover algorithm can be also represented by circuits using interconnected quantum 
gates and the Toffoli gate [8]. A circuit for 2 qubit system is shown in Figure 1. 

 

 
 

Fig. 1. A quantum circuit that implements Grover’s algorithm for N = 4 elements. Pauli 
matrix σx behaves as a NOT gate. Block with letter O denotes a query to the oracle. 

 
 
Another representation of Grover’s algorithm can be implemented using optical ap-
proaches, as described in [16] for a system of 2 qubit elements. An implementation 
using two trapped atomic ion qubits for a system of 2 qubit elements is also pro-
posed [17]. Other representations such as nuclear magnetic resonance are described 
in [5]. 
 
As it will be shown on the next sections, we will build a model that will also 
represent Grover’s algorithm, but using only classical (non-quantum) elementary 
gates (with its limitations, see Conclusions section). 

3 Toffoli gates 

Toffoli gates were invented by Tommaso Toffoli [15]. Its main characteristic is that 
it is a universal reversible logic gate. It is a universal gate because any logic gate can 
be constructed by means of several Toffoli gates interconnected. It is a reversible 
logic gate because, given a certain output, we can obtain its corresponding input. 
Toffoli gates can be modeled using the billiard ball model [2]. This gate is also 
known as a controlled-controlled-NOT gate, because it flips the third bit on a 3-bit 
gate if and only if the first two bits are 1. Fig. 2a) shows Toffoli gate truth table 
when applied to three bits, and Fig. 2b) shows its circuit representation. 

 
Toffoli gates are crucial for our proposed model, since it will aid us in the con-

struction of the inversion operator C because it can detect if the marked state was 
found or not (see Section 4.2). The output of the inversion operator C will be zero if 
the element is not the marked state, and it will be 1 if the marked state was found. 
These outputs will be used then for further calculations. 
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Fig. 2. a) Toffoli gate truth table when applied to three bits. b) Circuit implementation. 

4 Realization of Grover’s Algorithm using Toffoli gates 

Now that we have obtained the neccesary equations from the preceeding section, 
we now are able to model Grover’s algorithm. If we look closely to Eq. 3 and 4, we 
can see that the operations involved are elementary additions, substractions, multip-

lications and divisions, such as 4 2N Nα α β− − . Thus, we need basic gates that 

perform these operations, such that this model will be constructed interconnecting 
classical logic gates. The elements involved in these basic operations are needed for 
the model, so we must supply them at the beginning of the execution. We call these 
elements as the control data of the model. Also, the input data will consist of the 
initial element list, which contains the superposition of states. Fig. 3 shows a general 
diagram for the proposed model. 

 

 

Fig. 3. General shematic of Grover’s algorithm procedure. Grover operator is applied the op-
timum number of iterations in order to increase the amplitude of the marked state, and thus 
increasing its probability. 
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Elements from Figure 3 are described below. 
 
Input data:  It consists of the element list, which stores the marked state and the 

colective state. 
 
Control data: These are fixed data that must be supplied to the algorithm before 

its execution. Control data consists of α , which represents the amplitude of the 
marked state; β , which stores the amplitude of all the collective set; and finally 

1 N and 1 N , where N represents the total number of states on the database. 

 
Grover operator: This operator was defined in section 2 as U DC≡ . 
 
Input data amplitudes. This is the set of the final amplitudes of the marked state 

and the collective state. After applying Grover operator a total of / 4Nπ 
   itera-

tions to the superposition of states, we expect that the amplitude of the marked state 
is almost 1. 

4.1 Elementary gates 

In order to implement Grover’s algorithm using non-quantum operations through 
classical gates, we need to define them first.  Such gates constitute the set of basic 
operators of the model. 

 
  
Π  GATE 
This gate requires two input elements. It returns the product of both elements. 

(See Fig. 4) 
 
 

 
Fig. 4. π-gate: it returns the product of x times y 
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∑ GATE
 This gate also requires two input elements. It returns the sum of both elements. 

(See Fig. 5) 
 

 
Fig. 5: ∑-gate: it returns the sum of x and y. 

 
σ  GATE

 For this gate, two input data are needed. If  the second element is set to 1, the first 

element will suffer a change of its algebraic sign, otherwise, it will remain unaltered. 

(See Fig. 6) 
 

 
Fig. 6: σ -gate: if y is set to 1, this gate will change x’s sign. Oterwhise, x will keep un-
changed. 
 

4.2 Modeling of Grover operator using Toffoli and elementary gates. 

As stated before, Grover operator consists of the application of C operator, fol-
lowed by D operator, that is,U DC≡ .  

Inversion operator C is constructed according to the element we are searching for, 
that is, the marked state. We constructed inversion operator using the binary repre-
sentation of the element as follows:  if the marked state contains zeroes, two NOT 
gates are put sequentially, otherwise, no gate is needed. These gates are connected 
by means of a Toffoli gate; this gate acts as follows: if every bit is set to 1, it means 
that the marked state was found, and it will return a 1 as an output, otherwise, it will 
return a zero, (that is, the marked state was not found).Suppose we want to search 
for the element 10 on the superposition of states (whose binary representation is 
1010 for a 4-bit system). Construction for the inversion operator C using elementary 
and Toffoli gates is shown in Fig 7.  
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Fig. 7: Construction of inversion operator C for element 10 (which binary representation is 
1010). Fifth bit is set to 0, so if every remaining bit at the end was set to 1, this bit will be also 
switched to 1, meaning that the marked element was found. 

 
 
 
Diffusion operator D is needed to increase the amplitude of the marked state. Ac-

cording to Equation 3, this operator can be constructed using elementary gates as 
shown in Fig 8.  

 

 
Fig. 8: Diffusion operator. Interconnection of classical gates allows to increase the ampli-

tude of the marked state. This operator along with the inversion operator succesfully simu-
lates Grover operator U = CD. αt and βt are variables that will be used on further calculations.  
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For illustrative purposes, let’s take a closer look at the first part of Fig. 8. Eq. 4 
shows that the partial chain of operations4 Nα α− is performed. This is done by 
the section described in Fig. 9, taken from the diagram in Fig. 8 

 

 
 
Fig. 9: Carefully following each element on the diagram, we see that the operation 

4 Nα α− is successfully made. 

 

4.3 Searching for a marked state using the model. 

In order to show how the model works, let’s look for the element labeled “4” 
stored in a list of 3 q-bit elements. First, we construct the Inversion operator C for 
element 4 using a Toffoli gate and NOT gates (see Fig. 10) 

 
 

 
 

Fig. 10: Construction of inversion operator C for element 4 (which binary representation is 
100). Fourth bit is set to 0, so if every remaining bit at the end was set to 1, this bit will be al-
so switched to 1, meaning that the marked element was found. 

 
 
Toffoli gates are useful on the task of finding the marked state, since it detects 

wherever the marked state is there or not. Since the entire list consists of 8 elements 
(from 0 to 7), we must apply the inversion operator for every single element belong-
ing to the list. Fig. 11 shows the results of applying the inversion operator on ele-
ment 3 and 4. 
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Fig. 11: When inversion operator is applied to element “3”, it returns a 0 since it is not the 
marked state. On the other hand, C operator returns a 1 when applied to the element 4, that is, 
the marked state was found. This outputs are used on further calculations. 

 
 
 
Next step is to increase the amplitude of the marked state using the diffusion op-

erator. Fig. 12 shows how while combining the outputs from both in andversion dif-
fusion operators we increase the amplitude of the marked state, while the collective 
state remains without change. Notice that only the element 3 and 4 are shown for 
simplicity, but this has to be done for every element on the list of elements. 

 
 

 
Fig. 12: With the ouput of inversion operator, it is now possible to increment the ampli-

tude of the marked state. To accomplish this, we apply diffusion operator D and combine it 
with the output of inversion operator C, just like Eqs. 3 and 4 describe. Notice how the out-
puts from the inversion operator are multiplied by the auxiliary variable βt and then added to 
the final result. Since the ouput from the inversion operator is always zero for elements of the 
collective state, the product is also zero and nothing is added, except from the marked state.  
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5 Simulation of the model using a high-level programming 
language. 

At this stage, we can program an algorithm that simulates the processes of Grover’s 
algorithm for quantum search. This algorithm will be programmed on a high-level 
programming language to run some tests, in order to validate our model.   

 

5.1 General Algorithm 

We present the general steps needed to simulate correctly Grover’s Algorithm. This 
algorithm is based on Equations 3 and 4. Its advantage consists of the few steps 
needed to simulate Grover’s algorithm. 

 
 
Classic Grover Algorithm 
 
Input  
 N: the total number of elements on the system. 

( )1 2 1, ,..., Nβ β β −Β =
�

: the amplitude quoeficient vector 

of the collective state. 

Mα : the amplitude of the marked state. 

 
Output  

( )1 2 1' , ' ,..., 'Nβ β β −Β =
�

: the changed amplitude quoefi-

cient vector of collective state. 
'Mα : the new amplitude of the marked state. 

Variables 
:β the value of the amplitude of the collective 

state. We can store it on a single variable since 
all the collective state will have the same ampli-
tude through the entire algorithm. 
coef: an auxiliary variable used to store interme-
diate values. 
 

Begin 

//Initialize every element of the vector iβ ∈ Β
�

 and 

//the amplitude of the marked state to Mα  an 

//equally superposition of states 

1 Nβ ←  

1M Nα ←  
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Repeat from i = 1 to 4Nπ 
   

//Apply the operations from Equation 3 to the 
//amplitude of the marked state and the 
//collective state. 

 ' 4 2M M M N Nα α α β← − −  

 2 Nβ α β← +  

 
//Store the new normalized marked state to the 
auxiliary variable.  

 'Mcoef Nα←  

 

 //Assign each element iβ ∈ Β
�

 its new amplitude. 

 i coefβ ←  

 //Assign the new amplitude of the marked state. 
 'M coefα β← +  

 
End Repeat 
 
 

In order to valídate our proposed model, we implemented it using the program-
ming language C++. Data input consists of the number of qubits n and the number 

of desired iterations. It let you choose the optimum number of iterations 4Nπ 
  , 

or any other number of iterations. 

5.2. Tests using the optimum number of iterations 

Table 1 shows the results for databases built from 1 to 10 qubits, using the opti-
mum number of iterations. The probability  of the marked state is the probability 
of obtaining the marked state when a measure of the superposition of states is made. 
The probability of the collective state (or probability of failure) is the probability 
of obtaining one of the elements of the collective state. Since the probability of the 
marked state is always same, despite the element searched for, it is unnecessary to 
list the marked state. This means that if we are looking for the element numbered as 
3 on a list of 16 elements, the probability of obtaining it after applying Grover’s al-
gorithm is 96.1319%, and that probability will not change if we are looking for the 
element numbered as 5 on that same list.  
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Table 1.  Probabilities of obtaining the marked state and the collective state embedded into an 
n-qubit system, using the optimum number of iterations. 

 
No. of qubits 

n 
Number of 
elements N 

Number of 
iterations 

4Nπ 
   

Probability 
of the 

marked state 

Probability 
of the collec-

tive sate 

1 2 1 50% 50% 
2 4 1 100% 0% 
3 8 2 94.5313% 5.4691% 
4 16 3 96.1319% 3.8685% 
5 32 4 99.9182% 0.0806% 
6 64 6 99.6586% 0.3402% 
7 128 8 99.5620% 0.4318% 
8 256 12 99.9947% 0.0052% 
9 512 17 99.9448% 0.0511% 
10 1024 25 99.9461% 0.1023% 

 
 

5.3 Tests using an arbitrary number of iterations 

We made tests using an arbitrary number of iterations, instead of the optimum num-
ber. Table 2 shows the results for states from 1 to 10 qubit. 

 
Table 2.  Probabilities of obtaining the marked state and the collective state embedded into an 

n-qubit system, using an arbitrary number of iterations. 
 

 
No. of qubits 

n 
Number of 
elements N 

Number of 
iterations 

Probability 
of the 

marked state 

Probability 
of the collec-

tive sate 
1 2 3 50% 50% 
2 4 3 25% 75% 
3 8 6 99.9786% 0.0217% 
4 16 7 36.4913% 63.5085% 
5 32 7 20.9918% 79.0097% 
6 64 12 0.0071% 99.9936% 
7 128 10 91.9442% 8.0518% 
8 256 18 54.1236% 45.7980% 
9 512 20 94.2684% 5.7232% 
10 1024 27 97.8187% 2.1483% 
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6. Analysis of results. 

Table 1 shows that if we use the optimum number of iterations, probability of ob-
taining the marked state is almost 100% (except for the 2-qubit case, which is an ex-
pected outcome [14]). Particulalry, Table 1 shows that for a 3-qubit system, a prob-
ability of 94.5313%, which is also a result obtained at [1]. On Table 2 it is shown 
that unexpected results are obtained if a different number of iterations than the op-
timal is used. There is no way to know if there is an improvement of getting a better 
probability for the marked state. For example, we again can see on Table 1 that for a 
3-qubit system, we get a probability of 94.5313% using the optimum number of ite-
rations (in this case, 2); however, Table 2 shows that we get a better probability 
(about 99.9786%) if we use 6 iterations. This does not necessarily mean that if we 
use a bigger number of iterations, the probability of obtaining the marked state will 
be better. For example, calculating the probability of a 6-qubit system yields a 
99.6586% for the marked state, using the optimum number of iterations (6). But if 
we use twice that number of iterations, Table 2 shows that we get a quite bad result 
(0.0071%), meaning that the probability of failure (that is, the probability of obtain-
ing an element of the collective state when making a measure on the system) is 
about 99.9936%. Similar results can be seen when we are measuring probabilities on 
a database with 16 and 32 elements, or 4 and 5-qubits systems, respectively.  

7. Conclusions 

As powerful as classical computing is, it has several limitations. Research on un-
conventional computing, such as biological inspired computing and quantum com-
putting is made in order to deal with these limitations.  Despite that a lot of research 
work has been made on quantum computing, there is still so much work to do. There 
are a lot of obstacles that must be solved before a complete physical implementation 
of a quantum computer can be made. To be able to analyze and foresight the inner 
concepts and advantages of quantum computing, it is necessary to have a good un-
derstanding about theoretical quantum physics. Such knowledge is often lacked by 
classical computer scientists. For the aforementioned reasons, we need an alternative 
model capable of explaining the quantum processes (in this case, quantum data 
search) on terms that can be understood by classical computing developers and re-
searches. In this work, we have presented an alternative theoretical implementation 
of Grover’s quantum search algorithm. With this model, we are able to analyze the 
behavior of Grover’s algorithm on each iteration, without knowing quantum physics 
or owning an actual quantum computer.  With the analysis of the main quantum op-
erators of the algorithm, an equivalent model using only elementary operators by 
means of interconnecting Toffoli gates and elementary gates was built. This model 
was implemented on a high level programming language using equations 2 and 3. 
Many simulations were made using different databases with several elements. Re-
sults obtained coincide with those obtained on [1] and [13]. 

 
It is important to mention that our proposed model shows the behavior of the 

Grover’s algorithm for quantum data. However, since we are implementing a quan-
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tum algorithm on a classical computer, advantages acquired from quantum theory 
are lost, such as superposition of states, that is, the process that affects the elements 
on the database is made one by one, and not at the same time like Grover’s algo-
rithm quantum implementation. Our model only shows how the probability of ob-
taining the marked states increases with the algorithm, but it behaves just as a clas-
sical algorithm.  
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